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The three-dimensional mixing layer between two 
grazing perpendicular streams 
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The three-dimensional mixing layer between two grazing perpendicular streams 
is investigated both theoretically and experimentally. Similar shear velocity 
profiles are present about 40 initial momentum thicknesses downstream of the 
splitter edges. Thereafter the velocity component in the resultant direction of 
the two streams is shown to be constant through the layer; the profile perpen- 
dicular to this (the shear direction) has approximately an error function form. 
The ratio of the maximum shear stress to the square of the shear velocity 
difference is about 50 % greater than in a two-dimensional layer. 

1. Introduction 
There are numerous aerodynamic situations in which a turbulent shear layer 

exists between two streams whose directions are not the same. This occurs, for 
example, over the surface of a jet plume issuing from a surface into a mainstream, 
across a vortex sheet which is rolling up as from a slender delta at  incidence and 
in most three-dimensional boundary-layer separations. 

However, in many practical flows static pressure gradients and flow curvature 
complicate the mixing process and interpretation is difficult. Experiments have 
therefore been carried out in a plane layer between two horizontal uniform 
streams of the same velocity at  right angles to one another and one above the 
other, which merge from each side of a ‘splitter’ edge. 

Figure 1 is a perspective view of two contractions used in producing the mixing 
layer. One is above the other, and the centrelines are at  right-angles. The thin 
splitter plate lies between the upper and lower streams which each have the 
same cross-sectional dimensions and speeds. 

Downstream of the splitter there is an antisymmetric flow for which the only 
characteristic length dimension is in the x direction. The geometry gives velocity 
distributions which are antisymmetric in the direction parallel to the splitter 
(i.e. z )  but symmetric in the x, y plane. 

It is quite clear from experiments on ‘simple’ layers, between parallel streams, 
that the latter do not possess symmetries like this, even if a reference system is 
chosen which moves at  the mean velocity of the two streams. 

Figure 2 illustrates that the skewed layer is simpler than one involving parallel 
streams (including the single-stream case) because a set of particles contained 

t Present address : Aerospace Laboratory, Lockheed-Georgia Company, Marietta, 
Georgia 30060, U.S.A. 
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in a plane normal to the splitter edge at  time t = 0 occupies a mean position 
which is still planar after time At (see figure 2 ( b ) ) .  This cannot be said of flow 
in the ‘single-sided’ shear flow of figure 2 (a). The present flow is thus one of quite 
fundamental importance. 

Velocity 

(antisymmetrical) 

u(G y) ‘compon component’ 
(SYm netncal) w’(x’ ,y ’ )  ’ - y’, d 

i x‘, u’ 

FIGURE 1. (a )  The co-ordinate system. ( b )  and ( c )  Alternative 
projections of velocity profiles. 

2. Analysis 
We shall assume the spreading angle of the mixing layer is small, acknowledging 

that this is less well founded than for boundary layers, which spread more slowly. 
The appropriate axis system is in the common direction of the streams (2) and 
normal to the layer (y). Provided that disturbances do not propagate inwards 
from the ends of the splitter, there is no characteristic dimension in the z direction 
so that the equations of motion become: 

au au a - a - iap 
u-+v-+- (u’2)+- (u’v’) = ---, 
ax ay ax aY P ax 
av av a __ a - l a p  

u-+v-+-(u’v’)+-(v’2) = ---, 
ax ay ax aY P aY 
aw aw a I, a __ 

u-+v-+-(uw)+-(w’w’) = 0, ax ay ax aY 
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where p is the density and p the static pressure and here primes denote 
unsteady quantities. 

Applying order arguments in which the thickness of the layer, 6, is assumed 
small relative to the distance from the origin, x, we see that derivatives with 

FIGURE 2. History of fluid particles in two- and three-dimensional shear layers. (a )  Mixing 
layer between a single stream and ambient air. ( b )  The skewed mixing layer. A ,  position 
of a set of fluid particles at  time 0 ;  3, surfaces through the mean positions of the same 
fluid particles after time At. 

respect to x will be 6 times those taken with respect to y. Also, from the con- 
tinuity equation, it is evident that avlay = -&/ax and hence v is 6 times u in 
magnitude. It is also immediately obvious that u and w are each of the same order. 

We next assume that, as is found experimentally in simpler turbulent mixing 
layers, products like (u'w') have the magnitude 6 times (u2). Taking zcaupx as O( 1) 
and noting that the relative magnitudes can be found by dividing throughout 
by uaulax and then using the fact that ylx ,  v/u and utw'Iu2 are all 0(6),  the equa- 
tion of motion in the y direction becomes 

~ 

~ 

or 

a - l a p  
0(6)+0(6)+0(6)+--  (v'2) = --- 

aY Pay '  
p +pv'2 = f ( x ,  2) .  
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Since flow in each of the external streams is parallel and uniform, considera- 
tion of conditions at the edge of the layer gives 

p +pv'2 = P*, 
where p ,  is the pressure at  infinity and is constant. Thus 

The equation of motion in the x direction is reduced to 

au a u a - -  a -  
ax ay ax a Y  

u- +v-  +- ( U ' 2 - V f 2 )  +- (ufvf) = 0. 

- -  
If, as is common in boundary-layer theory, we neglect ~ ( ~ L I Z -  v'2)lax we have 

au au a -;-i 

ax ay a9 
u-+v-+-(uv)  = 0. 

The equation of motion in the z direction reduces to 

aw aw a I 
ax a?.l a?/ u-+v-+-(v'w) = 0. 

The continuity equation is 
au av -+- = 0, 
ax ay 

and the boundary conditions are: 

also 

and 

u(x, +a, 2) = uo, 

v(x, + co, 2) = 0, 

w(x, + 00,z) = - w,, 

v(x, 0,z )  = 0, 

w(x, 0,z )  = 0; 

u(x, - co, z )  = uo, 

v(5, - co, 2) = 0, 

w(5, - co, 2) = + wo, 

where uo = wo = (mainstream speed)/,/2. 
We now attempt to solve equations (I), (2) and (3) for self-preserving flows. 
Suppose that 

and 
where 7 = y/x. 
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Obviously uo and wo have associations with u' and w' and the continuity 
equation suggests that uo, rather than wo, should be associated with the vf 
components. 

Using the derivative of (4), the continuity equation (3) becomes 

uod;(r )  - avp7 = 0. 
r n  

Therefore 

Since f2 (0 )  may be selected arbitrarily, we may place it equal to zero, giving 

v = uo[rU7) -f,(r)I. (6 )  

Substituting (4), (5) and (6) into (1)  and (2), the equations of motion in the 2 and y 
directions become, respectively, 

f2f';-hi2 = 0 (7 )  

f; f 2  - hA2 = 0. 

(a solution of which is f h  = constant, hi2 = 0)  and 

(8) 

To illustrate the suggested solution of equation (7),  we next assume that the 
concept of eddy viscosity is valid in the present circumstances, namely 

~ 

ulvl = - vIT(au/ay). 

This will be so if the flow is self-preserving, which is already implicit in the present 
analysis. Then we may write, on inserting aulay from the definition in (4) and 
the definition of h12, 

1 
h12(1;1) = --.far), R2 

where R, = uox/VlT. 

Thus from equations (7) and (9) 

f&+ (w' = 0. 

The boundary conditions are 

and 

fi( '+Oo) = f L ( - O o )  = 1 

fi(0) = 0. 

One solution, and possibly the only one which satisfies the boundary conditions, 
is f = 1. This holds even if R, = R2(7); i.e. if the eddy viscosity vlT varies through 
the layer, so long as R, remains finite. In  this case 

21 = constant = uo; f2 = 7. (10) 

The solution of (8) may be obtained using a similar assumption with regard to 
eddy viscosity to that used above. However, here we put 
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where R, = U ~ X I V ~ T .  

Substituting (10) into (8) gives 

Assuming R, = constant, the general solution to this equation is given by 

f; = K ,  + K ,  1: e-gR172 dy.  

Thus 

Using the boundary conditions for w gives K ,  = - 1 and K,  = 0. Therefore 

w = wo ( K ,  + K , / '  e-BR172 d v )  . (12) 
0 

or 
W 
- = -erf (r($Rl)i). 
WO 

A more general result? niay be obtained as follows. The general solution of 
( l l a )  is 

where A and B are integration constants. After evaluating A and B using the 
boundary conditions f ; ( O )  = 0 and f ;( + co) = 1 we obtain 

which satisfies automatically the boundary conditionf;( - a) = + 1 and reduces 
to the expression (13) on putting R, = constant. 

In  calculating shear stress (7, and ry) from measured velocity profiles, we 
shall later require a further result, derived from (7)  and (8). From (7) 

t This was pointed out to us by Dr N. Hayasi. 
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upon changing the order of the product in the first term and rewriting it in terms 
of f2. Similarly, from (8) 

Equations (14) and (15) may be evaluated from the experimental velocity 
profiles. 

Equation (15) is not suitable for use with the single stream, even with axes 
rotated by 4 5 O ,  owing to difficultieswith the boundary conditions. The alternative, 
closely related, equation is given by Townsend (1956) 

on neglecting turbulent terms as before. 

3. Apparatus, probes and experimental aspects 
Figures 3 and 4 show the rig and test section layout. The requirement was for 

streams of not more than 150 ft./sec and Reynolds numbers of order lo6 in the 
stream directions, so that equilibrium layers became well developed. Mixing- 

FIGURE 3. Plan view of the apparatus. 

layer thicknesses were required which did not lead to small probe size and the 
associated difficulties with undue lags in pressure reading and in manufacture. 
It was also thought desirable to be able to set angles other than 90’ between the 
streams, though in the event this ability was not exploited. However, it did make 
necessary two separate open return devices. 

Axial flow fans and ‘single-sided ’ contractions were used. A final contraction 
ratio of 4: 1 and a stream breadth: height ratio of 4: 1 were employed. The ranges 

6-2 
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of commercially available axial fans were such that two-stage machines of 3 ft.  
diameter were the best proposition. The fan stages had common rotational sense 
and delivered approximately 14,000 cu.ft./min of air a t  6 in. water pressure rise. 
A bleed a t  the base of the second stage motor fairing alleviated a central ‘ shadow ’ 
in total pressure a t  outlet and a peripheral bleed was used for fine adjustment 
when equalizing jet speeds. The speed of both streams was about 145 ft./sec a t  
outlet, ordinary induction motors being used on the 50 CIS mains supply. 

FIGURE 4. Perspective view of the apparatus, looking upstream in 
approximately the ‘common’ direction. 

Further description of the rig and its design are given by Hackett & Cox (1967). 
Figure 4 shows sidewall extensions to the contractions which prevented the 

development of mixing layers from the inner sides of the contractions. For obvious 
reasons, similar extensions from the outer sides of the contractions are undesirable 
and some loss of working area here had to be accepted. The triangular working 
area which resulted had a 42.42in. base and a height of about 17 in. 

It was a matter for conjecture whether or not a ‘floor’ and ‘roof’ should be 
fitted to the working area. However, had they not been fitted, double the thick- 
ness of mainstream would have been needed to prevent the top and bottom 
mixing layers meeting the experimental one, and the apparatus probably would 
have outgrown the room. It was appreciated that if the horizontal component 
of velocity normal to  the splitter was affected by the shear parallel to  it (and 
there was no reason to  suppose it would not be), a displacement effect could arise 
leading to  streamwise static pressure gradients in the mainstreams, dependent 
upon roof and floor constraint. As it was not possible to  anticipate even the sense 
of such an effect, a horizontal roof and floor were fitted. This design was vin- 
dicated experimentally since the common component of velocity turned out to 
be approximately constant. The use of a Reynolds number normal to  the splitter 
of about a million, which led t o  a bulky rig with quite high installed power, was 
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justified. With, say, half this value there would have been serious doubts as to 
whether self-preserving flow was fully established since virtual origins of mixing 
occurred several inches frdm the splitter under some conditions. 

Experimental techniques 

Flow direction, static and total pressures were measured at  ‘standard ’ positions 
shown in figure 5 using vertical traverses through the layer. The traverses at  
points along AB are intended for comparisons with theory while points along CD 
are more appropriate when comparing with single stream results, the upper 

24 in. 

values of x’ 
(measured from C) 

FIGURE 5. Traverse positions. 0, ‘standard’ positions (two stream runs) ; 0, ‘standard’ 
positions (single stream runs) ; , other available positions. 

stream being used. The ninety degree range of yaw angle made it imperative to 
rotate probes about a vertical axis and initial measurements were always with 
a 5-hole instrument, shown in figure 6 ,  nulled in yaw. Large vertical velocities 
were not expected so nulling was not attempted in pitch. However, upper minus 
lower tube differential pressure measurements were useful in setting up the 
apparatus, particularly in attaining correct antisymmetry, even though artificially 
high pitch indications were encountered in the shear layer. 

In  all traverses with the 5-hole instrument, five probe pressures, two reference 
pressure differences, yaw and vertical positions were measured using transducers 
and recorded upon punched tape prior to computer processing. Reference 
pressures were measured at  points on the two contractions, centreline velocities 
used for normalization being determined using appropriate calibration constants. 
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Equalization of the speeds of the two streams was effected by equalizing total 
pressure readings a t  points 5 in. above and below the splitter for each particular 
traverse position. 

Centreline 
FIGURE 6. The 5-hole probe. 

The mainstream flow quality was somewhat below wind tunnel standards, 
having a root-mean-square turbulence level of about 0.9 %, but this figure was 
still low in comparison with turbulence levels to be expected in the free shear 
layers. The turbulent boundary layers around the exits to the contractions were 
about in. thick and the measured growth along the roof and floor was equivalent 
to a displacement of about to. 

The attainment of appropriate initial conditions with both streams present 
was quite difficult. The symmetry of the whole flow was very sensitive to 
the ratio of upper to lower boundary-layer thickness, a situation aggravated in 
initial tests by the use of a boundary-layer controlled splitter, which tended to 
amplify this ratio. The more obvious indications of wrong initial conditions in- 
cluded the appearance, near the start of mixing, of symmetric components in the 
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indicated pitch distributions through the layer (which should be entirely anti- 
symmetric) and excursions in static pressure at the layer centre sometimes reach- 
ing several tenths of freestream dynamic pressure. However, once symmetries 
were correct, the fact that the boundary layers were turbulent at  the start of 

Total and static pressure and velocity ratios 
0 , 0;2 0;4 0;6 0;8 l , O  

-2 

-1 

!I' 0 

-1 
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y' 0 

-1 

-2 
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Y' 0 

-1 

-2 

Lower stream only 
Both streams together 

-6 -4 -2 0 2 4  6 8 
Pitch angle 

FIGURE 7. Typical flow measurements in two- and three-dimensional shear layers. z = 0, 
z = 8.6 in. (i.e. z' = 12.1 in.). (a)  Total and static pressure ratios (upper scale). ( b )  Velocity 
ratios (upper scale). (c )  Measured pitch angles (lower scale). [ H  is the total pressure, q is 
the dynam.ic pressure and Vret is the freestream velocity.] 
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mixing delayed the approach to similarity less than the study by Bradshaw 
(1 966) might suggest. 

The typical results shown in figure 7 indicate that the 5-hole probe performance 
was quite good. Static pressure indications were fairly constant through both 
single-stream and skewed shear layers. The pitch velocity indications, though 
no more than 5 yo of freestream, exceeded values to be expected from considera- 
tion of probe size and total pressure gradient; a fact also confirmed experimentally 
by using a half-scale probe. Since application of the continuity equation in the 
x, y plane for the skewed layer indicated vertical components of smaller magni- 
tude, pitch indications were probably in error, possibly on account of large 
(turbulent) flow angles which exceeded the linear range of the probe. A more 
detailed discussion of 5-hole probe performance is given by Hackett & Cox (1967). 
Some of the tests which will be reported here were with the boundary-layer 
controlled splitter fitted, but with no suction applied. Other (later) tests were 
with +in. thick metal splitter plate installed, chamfered at the trailing edge. 
This reduced the boundary-layer thickness at  the start of mixing by about t in .  
and reduced the maximum measured confluence anglein the vertical plane normal 
to the splitter from 8" to about 3+". (Boundary-layer control increased the 
maximum confluence angle.) Thgrespective trailing edge angles were 3.8" and 2.6". 

Although the centre of the mixing layer lay in a horizontal plane with the 
boundary-layer control box fitted, it  was swept downwards after fitting the 
thin splitter. A careful check of the geometry failed to explain this; the drift 
of the centre of the layer was downwards at  about 1" in a plane normal to the 
splitter. 

The displacement in figure 7 between the skewed-layer velocity profile and 
those for single layers is more marked than with the thin splitter fitted. 

4. Experimental results 
Comparison of two- and three-dimensional shear layers 

As mentioned earlier, the skewed shear layer may be regarded either with 
respect to axes in one stream, for comparison with the more familiar two- 
dimensional layer, or relative to the axes used in the above analysis. 

There are two apparent differences between the two- and three-dimensional 
situations. If we use, as a base line, results from the upper stream alone, with a 
shear layer starting from a normal edge, we must consider the effect of skewing 
this edge by 45' before examining the consequences of cross flow due to the 
addition of the lower stream. 

In figures 8 and 9 we see that skewing the start of mixing by 45" has little 
effect on the two-dimensional shear layer though there may be a slight reduction 
in the spreading rate. However, as there was variation of boundary-layer thick- 
ness along the 45" edge, there was some doubt concerning the position of the 
virtual origin. 

In the similar case of a boundary layer in zero pressure gradient starting at  a 
swept leading edge, the results of Ashkenas (1958) show that the skin friction 
coefficient deduced from the logarithmic velocity profiles is unaltered by 45" 
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of sweep and therefore that the growth rate is unaltered; the direct measurements 
of growth rate show a small increase due to sweep. Some measurements by 
Carr-Hill (unpublished work at NPL) show a small increase in skin friction 
(5  yo at 60" sweep). The final conclusion to be drawn is that turbulent shear flows 
are to a good approximation unaffected by slow spanwise changes (see also 
Bradshaw 1969). 

d 

II 

.* 
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a 

FIGURE 8. Velocity distributions for two-and three-dimensional shear layers. Thin splitter, 
x , upper stream normal edge; 0, upper stream 45" edge; +, both streams based on Hg. 
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Upon adding cross flow we see an  increase in velocity gradient in a direction 
normal to the upper stream (figure 8) accompanied both by a closing up of 
constant velocity rays (figure 9) and by a shift of the half-velocity line to  a 
horizontal position. We may expect some similarity between the upper parts of 
the skewed-layer and the single-layer profiles, since there is little cross flow here, 
but a t  lower values of u, the cross flow is increasingly important and only if w 
is simply superposable may we expect any resemblance to  the 'simple' case. 
To understand the skewed layer further, it is necessary to  revert to axes normal 
and parallel to the splitter edge. 

Y' 

Y' 

0 10 20 
x' in. 

FIGURE 9. Spreading of two- and three-dimensional shear layers. 

- 

x , upper stream 90" 
- edge ; -0, upper stream 45" edge; A, both streams 45" edge. 

Velocities in shear and common directions : comparison with theory 
In figures 10 and 11 we see views of three-dimensional velocity profiles seen from 
above and looking outward from the splitter. The downward drift, mentioned 
previously, is evident in figure 11 but has been removed from later figures. Cross- 
plotting these figures gave straight rays (with a virtual origin, x,, approximately 
0.4in. behind the splitter edge), thus justifying the similarity analysis above. 

10 %) of the common 
component. Although we see something like a wake development in u, the result 

Another important feature is the constancy (to within 
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is in broad agreement with (10) and it seems reasonable to conclude that, had 
zero initial boundary layer been achieved by boundary-layer control, the common 
component would have been exactly constant, provided no stability problems 
arose in starting the mixing. 

c 

FIGURE 10. Velocity distributions in a skewed mixing layer. Boundaq-layer control box 
fitted, but no suction applied. (a) Vector plot. (b )  Shear velocity profiles. Values of 2: 
a, 0.53 in.; A, 4.35 in.; +, 8.59 in.; 0, 12.90 in.; x , 17.15 in. 

I n  figure 12 the shear profiles (w) are plotted on a probability scale, upon which 
error functions such as equation (13) are straight lines. It is evident that the 
experimental results agree quite well with the predicted form. Eddy Reynolds 
numbers, derived from the slopes of the curves in figure 12, lay between 190 and 
230, with no consistent variation with x.  R, values were sensitive both to the 
choice of x,, and to the choice of the best straight lines in figure 12. 

Culcubtion of shear stresses 

For comparisons between different shear flows it is simplest to consider a Reynolds 
number based on the shear velocity difference AU and a length scale typical of 
the local profile. If the length scale is Sf = AU/(aU/ay)max, then the Reynolds 
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number AU Sf/vT is equal to P ( A U ) ~ / T ~ ~ ~ ,  a simple measure of the turbulent 
intensity in the shear layer. Since the velocity profiles in jets, wakes and mixing 
layers are nearly similar, aImost any length scale will do for comparisons between 

0.8 
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$ 0.4 
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0 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 
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d .- 
a 

FIGURE 11. Velocity distributions in a skewed mixing layer. Thin splitter fitted. (a )  Vector 
plot. ( b )  Shear profile. Value of x: 0, 0.21 in.; A, 4.31 in.; +, 8-56 in.; 0, 12.80in.; 
x , 17.04 in. 

different flows. It is difficult to measure Sf accurately (one tends to take an 
average aU/ay over a range of at  least 0.2AU so that the resulting Reynolds 
number is p(AU)2/;7 where ;7 is the average shear stress over the same range) 
and the best course is to derive ‘ T ~ ~ ~ / ( A U ) ~  directly. In  the present experiment 
7 has been calculated from the measured velocity profiles, using (15) and (16), 
a process that is not critically dependent on measurements of aUlay. 

The technique used for the two-dimensional layer was to curve fit the nor- 
malized experimental data at  large scale and pick off 7 values for velocity ratios 
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of 1.00, 1.00, 0.99, 0.975, 0.95, 0.925, 0.900 and every 0.05 down to 0.10, 0.075, 
0.050, 0.025, 0.000 and 0-000, plus a few extra near peak shear stress giving 
33 points in total. The approach for the skewed layer was similar but involved 
a total of 37 points, the range & 0.7071. 

0.20 

0.10 - 
H" 
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o = :  
I I  

H 
a 

f i  
-0.10 

- 0.20 

Probability scale (1/42) (w/ V,,J 

FIGURE 12. Probability plot of normalized shear velocities in a skewed shear layer. Thin 
splitter. Value of 2: A, 4.31 in.; +, 8-56 in.; 0, 1244in.; x ,  17-24in. 

The determination of integration constants, by trial shifts in the value of zero 
offset in 7 to obtain equal results a t  the edges of the layer, was greatly aided by 
the use of a remote access computer terminal. The peak shear stress and the 
smooth blend to zero shear stress each required a detailed description of the 
profile at the ends of the velocity range. The single-stream calculation was more 
sensitive in this regard and differences between the present results and those we 
derived from the velocity profile given by Liepmann & Laufer (1947) may be 
due to difficulties of this sort. A deeper investigation of methods for applying (15) 
and (16) appears desirable. 

Figure 13 shows shear stresses, ry, calculated as described above from experi- 
mental velocity profiles. The results for the skewed layer are for f ;  assumed to be 
unity; the inclusion of experimental f :  variations produced a very similar result. 

5. Discussion 
The simplest way to think of the skewed mixing layer is as a mixing layer 

between two equal and opposite streams in the z direction, being translated 
bodily in the x direction (this is almost exactly the same as the unsteady mixing 
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layer between equal and opposite infinite streams impulsively started at  t = 0, 
the resemblance being much closer than that between the boundary layer and 
the Rayleigh problem of the impulsively-started flat plate). We can then con- 
centrate on the motion in the y, x plane, and compare the shear stress coefficient 
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FIGURE 13. Shear stresses for two- and three-dimensional shear layers. 

-%;ijw/(2w0)2 with -UV/U;  or, in general, ZZ/(AU)2. Since all free shear layer 
velocity profiles are nearly similar, the shear stress profiles are nearly similar 
andweneed compare onlyZVmax/(A u)2, which wasshownaboveto be thereciprocal 
of a conveniently-defined eddy Reynolds number. Values of ZGma,/(AU)z in 
different flows are: 

Single mixing layer 11110 
Liepmann & Laufer (1947) (present calculation 1187.5 

Present experiment, single mixing layer 1172.5 
Skewed mixing layer 1153-2 
Two-dimensional jet (Bradbury 1965) 1/42 
Wake (Townsend 1956) 1/30 

from velocity profile) 
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The major difference between the two types of mixing layer is evidently not the 
three-dimensionality as such, which reduces to the addition of a uniform transla- 
tion (figure 2), but the absence of v component mean velocity in the case of the 
skewed mixing layer. Townsend (1956) has suggested that the presence of 
appreciable negative aV/ay in jets is largely responsible for the difference in 
eddy Reynolds number between jets and wakes, because of the consequent re- 
straint on growth of the large eddies, and Gartshore (1965) has produced a simple 
analysis for self-preserving flows which, with an empirical constant, gives 

and reconciles jet and wake measurements very well. In  the region of maximum 
aU/ay in a single mixing layer, (aV/ay)/(aU/ay), which is just - y /x ,  is of the 
order of 0.03, so that Gartshore's formula suggests that the ratio of shear-stress 
coefficients in the skewed and single layers should be roughly 1-4, other things 
being equal. Since the ratio determined experimentally was 72.5/53.2, or 1.36, 
almost all of the difference between the two types of mixing layer may be attri- 
buted to the difference in v component behaviour. 

Since the variations in common-component velocity seem to be attributable 
to the initial boundary layer &nd would not occur in the ideal mixing layer, it 
is not realistic t o  calculate the common component of shear stress; it would 
undoubtedly be very small. Therefore we may say that in the ideal layer the 
shear stress would have the same direction as the velocity gradient; the experi- 
ment throws no light on whether this would be the case in a general three- 
dimensional flow in which the direction of the resultant velocity gradient varied 
from point to point. 

6. Conclusions 
A skewed mixing layer (figure 1) has been investigated both theoretically and 

experimentally. It may be thought of either as a mixing layer between equal and 
opposite streams in the z direction which is translated bodily in the x direction, 
or as a simple shear layer from a 45" edge subjected to a cross-flow. Whichever 
view is taken, symmetry demands that there can be no mean vertical velocity 
at the centre of the layer, which contrasts with the single-stream shear layer. 

Similar shear velocity profiles were evident approximately 4 in. downstream of 
the splitter edges; i.e. about 40 times the upper-plus-lower boundary layer 
momentum thickness at the start of mixing. The 'common' component of velocity 
u. (figure 1) tended to a constant value thereafter, giving zero mean vertical 
velocity in the layer and zero displacement thickness. This is the form predicted 
by equation (10) of the analysis and is of some importance in the rolling-up of 
vortex sheets, of which the present layer is an idealization. 

The constancy of the u component, combined with an eddy viscosity assump- 
tion, leads to an error function form for the 'shear ' component of velocity, w. This 
has been confirmed experimentally. The value of local eddy Reynolds number, 
based on the thickness over which the central 50 % of shear velocity difference 
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occurs, lay between 18 and 22. The dimensionless eddy viscosity, using velocity 
gradient at y = 0, was 1/42. 

The ratio of maximum shear stress to the square of velocity difference, derived 
from shear velocity profiles, is approximately 1.4 times larger than in a simple 
mixing layer, at  least very probably because of the absence of streamline con- 
vergence in the x, y plane, whose effect is predicted by Gartshore (1965). 

The above comments apply only to cases of self-preserving three-dimensional 
shear flows in which curvature and pressure gradient are small. 

Experiments on the layer between a single stream and ambient air showed little 
change on proving the starting edge from a normal to a 45O position. It is pointed 
out that the results of Ashkenas (1958), properly interpreted, lead to the same 
conclusions for the boundary layer. 

The authors are indebted to many members of the N.P.L. Aerodynamics 
Department workshop staff who took part in the construction and day-to-day 
maintenance of the apparatus, and to Mr R. F. Johnson who was responsible for 
the efficient operation of the data logging equipment. We are particularly grateful 
to Mr P. Bradshaw for constructive comments throughout and his considerable 
help in tidying up loose ends after the senior author’s departure. Thanks are also 
due to Mi. N. Gregory for comments at  the draft stage and to Professor J. T. Stuart 
for help with the mathematics. 
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